![]() Advanced vitrification system pyrographite
专利摘要:
A device for improving waste vitrification in a disposable canister, the process for using the device, and the process for making the device. The disposable canister, also known as a module, has outer and inner containers with thermal insulation therebetween. The device includes an inner container of graphite having a layer of pyrographite on its external wall. The outer container is typically made of stainless steel. The inner container is heated, typically by induction, to melt the frit and waste. The melted mixture is then cooled to form a vitrified product in the module. The fabrication of the pyrographite coating on the inner container involves heating the container to about 1500 degrees centigrade in a methane atmosphere, then cooling the container to ambient temperature. 公开号:US20010000525A1 申请号:US09/733,526 申请日:2000-12-11 公开日:2001-04-26 发明作者:James Powell;Morris Reich 申请人:Karl Storz SE and Co KG; IPC主号:G21F9-305
专利说明:
[1] 1. This application claims the benefit of U.S. patent application Ser. No. 09/350,194 filed on Jul. 9, 1999, which in turn claims the benefit of U.S. Provisional Application No. 60/094,593 filed on Jul. 30, 1998. BACKGROUND OF THE INVENTION [2] 2. The present invention relates generally to hazardous wastes, and, more specifically, to vitrification thereof for long term storage. [3] 3. This application is a divisional of U.S. patent application Ser. No. 09/350,194. U.S. patent application Ser. No. 09/350,194 and the disclosure of U.S. Pat. No. 5,678,237, which provides a method of in-situ vitrification of waste materials in a disposable canister, are hereby incorporated herein by reference. The disposable canister is a module comprising an inner container, an outer container, and insulation therebetween. The outer container serves as the traditional disposal container typically made of steel, which is thermally insulated from an inner container, typically of made of graphite. The inner container serves as a crucible to melt a waste/frit mixture and contain a molten vitrified product. The inner container is typically made of graphite and is typically heated by induction. [4] 4. The invention, which is the subject of this application, is a means and a method to maximize the delivery of inductive energy to the inner graphite container, minimize heating of the outer container, minimize the thickness of the inner container, and because of the minimization in thickness of the inner container, correspondingly increase the volume inside the canister which is available for waste. The invention relates to the use of a pyrographite layer on the exterior wall of the inner container. [5] 5. Accordingly, it is desired to provide an Advanced Vitrification System Pyrographite (AVSP) to practice an improved method for modularly processing and vitrifying waste materials, such as nuclear waste, in a disposable canister. A combination, method of using and method of making a pyrographite layer on the exterior wall of the inner container is the innovation sought to be protected. BRIEF SUMMARY OF THE INVENTION [6] 6. A device for improving waste vitrification in a disposable canister, the process for using the device, and the process for making the device. The disposable canister, also known as a module, is composed of outer and inner containers with thermal insulation therebetween. The device includes an inner container, typically made of graphite, having a layer of pyrographite on its external wall. The outer container is typically made of stainless steel. The inner container is heated, typically by induction, to melt the frit and waste. The melted mixture is then cooled to form a vitrified product in the module. The fabrication of the pyrographite coating on the inner container involves heating the container to about 1500 degrees centigrade in a methane atmosphere, then cooling the container to ambient temperature. BRIEF DESCRIPTION OF THE DRAWINGS [7] 7. In the drawings: [8] 8.FIG. 1 is the top view of a disposable canister showing the pyrographite layer on the outer wall of the inner container. [9] 9.FIG. 2 is the process flowsheet showing the method of making the pyrographite layer. DETAILED DESCRIPTION OF THE INVENTION [10] 10. The AVSP invention significantly improves the apparatus and the methodology for vitrification of wastes within a disposal canister having an inner and an outer container. The AVSP invention also involves the method of making the improvement to the apparatus. In the embodiment of the invention shown in FIG. 1, the outer container (1) is separated from the inner container (4) made of graphite by insulation (2). The inner container has a pyrographite coating (3) on its exterior wall. In the embodiment of the invention shown in FIG. 2, the pyrographite coating is made by placing the container in an oven having a methane atmosphere, then it is heated to about 1500 degrees centigrade, and then allowed to cool to ambient temperature. [11] 11. In particular, the AVSP invention provides a device, a method of using the device to minimize heating the outer container while heating the inner container, typically through induction, and a method of manufacturing the device. The AVSP invention enhances the protection of the overall integrity of the outer container, which otherwise could be compromised by unwanted heat through induction. The AVSP invention significantly improves the efficiency and functionality of the heating and vitrification process. [12] 12. The fraction of the electrical input energy that can be used to heat the inner container, typically a graphite crucible, depends, in part, on: [13] 13. 1) the relative thickness of the inner container, typically made of graphite, and the outer container, typically made of stainless steel; and [14] 14. 2) the relative electrical conductivity of the inner container and the outer container. [15] 15. For purposes of discussion, it is hereinafter assumed that the inner container is made of graphite and the outer container is made of stainless steel. Assuming that the outer stainless steel canister is fully continuous electrically (i.e., there is no non-conducting joint in the stainless steel canister), the ratio of electrical power deposited in the graphite inner container to that deposited in the outer stainless steel container is equal to the ratio of the product of specific electrical resistivity in ohm-centimeters of the steel and the thickness of the graphite inner container in centimeters over the product of the specific electrical resistivity of the graphite and the thickness of the outer stainless steel container in centimeters. [16] 16. The above relationship is based on the condition that the radial thickness of the thermal insulation layer between the hot graphite and the cool stainless steel is small compared to the radius of the canister. [17] 17. The electrical resistivity of graphite can be made as low as about 300 micro ohm-cm, while the resistivity of stainless steel is on the order of 100 micro ohm-cm. The radial thickness of the graphite container on the other hand, is approximately 3 times the thickness of the stainless canister. [18] 18. Accordingly, the ratio of the electrical power deposited in a graphite inner container to that deposited in an outer stainless steel container is approximately equal to the product of 100 times 300 over the product of 300 times 100, or about 1. A ratio of 1 means that about as much electrical heating power is deposited in the stainless steel container as in the graphite inner container. [19] 19. The ratio of the electrical power deposited in the graphite inner container to that deposited in the outer stainless steel container can be made much greater than 1 using a pyrographite coating on the exterior wall of the inner container. [20] 20. Pyrographite is a highly anisotropic, two dimensional planar graphite structure produced by the thermal decomposition of methane on a hot surface (e.g., about 1500° C.). The deposited pyrographite has very high thermal and electrical resistivity along the plane of deposition, and low conductivity in the transverse direction to the plane. In fact, the in-plane resistivity of pyrographite is almost as low as that of copper. [21] 21. As an example, if the graphite container were to have a pyrographite layer that was only 5% of the total thickness of the graphite (i.e., 50 mils out of a total thickness of one inch), the resultant overall electrical resistivity of the 2-layer graphite container would be a factor of approximately 10 lower, making the ratio of the electrical power deposited in the graphite inner container to that deposited in the outer stainless steel container about equal to 10/1. In this case, over 90% of the input electrical power would go into the graphite container rather than only one-half. [22] 22. Increasing the fraction that goes into the graphite container would ease the cooling load on the outer stainless steel canister, and reduce the cost of the electrical energy required for the drying/vitrification process. [23] 23. Deposition of the pyrographite on the exterior wall of the inner container is a simple process. It could be carried out before or after coating the inside of the crucible with alumina or other ceramic. The fabrication of the pyrographite coating on a graphite container involves heating the container to about 1500 degrees centigrade in a methane atmosphere, then cooling the container to ambient temperature. In addition to maximizing the heating fraction in the graphite crucible, the use of a pyrographite layer would enable the use of a thinner graphite inner container for a given ratio of the electrical power deposited in the inner container to that deposited in the outer container, which helps to maximize the amount of glass filling the available volume inside the inner container. EXAMPLE [24] 24. This example illustrates the preferred embodiment of the Advanced Vitrification System Pyrographite used for the concentration and vitrification of high-level radioactive wastes. The canister has an inner container made of graphite having a ceramic coating on the inside and a pyrographite coating on the outside. The inner container serves as a crucible to vitrify the wastes. Insulation is placed between the inner container and the outer container. Frit and high level radioactive waste are added to the inner container. The inner container is then inductively heated to the vitrification temperature. The pyrographite coating on the exterior wall of the inner container lowers the electrical resistivity of the inner container by a factor of about ten. [25] 25. While there have been described herein what are considered to be preferred and exemplary embodiments of the present invention, other modifications of the invention shall be apparent to those skilled in the art from the teachings herein, and it is, therefore, desired to be secured in the appended claims all such modifications as fall within the true spirit and scope of the invention.
权利要求:
Claims (5) [1" id="US-20010000525-A1-CLM-00001] 1. A disposable module for vitrification of waste comprising: an outer container; an inner container disposed inside the outer container wherein the inner container has a pyrographite coating on its exterior surface having a thickness of about 5 percent of the thickness of the inner container; and insulation between the outer container and the inner container. [2" id="US-20010000525-A1-CLM-00002] 2. A device according to claim 1 wherein the inner container is graphite. [3" id="US-20010000525-A1-CLM-00003] 3. A method of vitrifying waste comprising: loading waste in a disposable module wherein said module consists of an outer container, an inner container disposed inside said outer container wherein said inner container has a pyrographite coating on its exterior surface having a thickness of about 5 percent of the thickness of the inner container, and insulation between the inner container and the outer container; heating the waste inside the disposable module to melt the waste; and cooling the melted waste for vitrification thereof inside the disposable module to form glass. [4" id="US-20010000525-A1-CLM-00004] 4. A method according to claim 3 wherein the inner container made of graphite. [5" id="US-20010000525-A1-CLM-00005] 5. A method of making a pyrographite coating on the exterior surface of an inner container of a disposable module for the vitrification of waste comprising: loading the inner container of the disposable module in an oven wherein the oven has a methane atmosphere; heating the oven to about 1500 degrees Centigrade; and cooling the inner container to ambient temperature.
类似技术:
公开号 | 公开日 | 专利标题 US6512216B2|2003-01-28|Microwave processing using highly microwave absorbing powdered material layers Bernardo et al.2009|Fast‐Sintered Gehlenite Glass–Ceramics from Plasma‐Vitrified Municipal Solid Waste Incinerator Fly Ashes Yoshikawa2010|Fundamentals and applications of microwave heating of metals US5678237A|1997-10-14|In-situ vitrification of waste materials CA1200826A|1986-02-18|Joule melter for the processing of radioactive wastes CN102844819B|2016-01-06|For pyrolysis and the enhancing of vitrified microwave system, the method and apparatus of radioactive waste US6479021B2|2002-11-12|Advanced vitrification system pyrographite US4940865A|1990-07-10|Microwave heating apparatus and method Gautam et al.2013|Synthesis and optical investigations on | TiO 3 borosilicate glasses doped with La 2 O 3 EP1285445A1|2003-02-26|Advanced vitrification system filling process US4581163A|1986-04-08|Method for conditioning weakly to medium-active wastes US20060091134A1|2006-05-04|Method and apparatus for heating refractory oxides Charvin et al.2018|Nuclear waste treatment by induction heating and stirring of a metal/glass bath: the PIVIC process Sobolev et al.1994|Synthetic melted rock-type wasteforms US6395954B2|2002-05-28|Advanced vitrification system frit Ahmad1991|Effect of microwave heating on the solid state reactions and mass transport in ceramics WO2002091392B1|2004-05-13|Waste vitrification process | and melting process Sturcken1990|The use of``self heating``ceramics as crucibles for microwave melting metals and nuclear waste glass JP2566163B2|1996-12-25|Waste melting furnace Gombert et al.2002|Cold-Crucible design parameters for next generation HLW melters AU2003275777A1|2004-06-15|Method and apparatus for heating refractory oxides Charvin et al.2018|Treatment of nuclear mixed waste by induction heating and electromagnetic stirring of a metal/glass bath the PIVIC process. CN105185733B|2019-07-05|A kind of microwave annealing device Wang et al.1995|Current density effects on the corrosion of ceramic and metallic electrode materials in waste glasses Blair1976|Vitrification of nuclear waste calcines by in-can melting
同族专利:
公开号 | 公开日 US6211424B1|2001-04-03| US6479021B2|2002-11-12|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JP2013525745A|2010-03-09|2013-06-20|クリオンインコーポレイテッド|Microwave enhanced system for pyrolysis and vitrification of radioactive waste|US4389459A|1980-05-06|1983-06-21|Ball Corporation|Conductive coatings for metal substrates| FR2484284B1|1980-06-12|1983-11-10|Siderurgie Fse Inst Rech|| GB2144871A|1983-08-03|1985-03-13|Philips Electronic Associated|Tube cell for atomic absorption spectrophotometry| US4812212A|1987-09-08|1989-03-14|Harco Technologies Corporation|Apparatus for cathodically protecting reinforcing members and method for installing same| JPH0721556B2|1988-03-28|1995-03-08|動力炉・核燃料料開発事業団|Method for melting and solidifying glass of radioactive waste liquid with suppressed formation of gaseous ruthenium| JP3215407B2|1989-07-18|2001-10-09|ヘムロツク・セミコンダクター・コーポレーシヨン|High temperature reactor| US5461185A|1994-04-19|1995-10-24|Forsberg; Charles W.|Radioactive waste material disposal| US5678237A|1996-06-24|1997-10-14|Associated Universities, Inc.|In-situ vitrification of waste materials|US6558308B2|2001-05-07|2003-05-06|Radioactive Isolation Consortium, Llc|AVS melting process| JP2005507494A|2001-09-25|2005-03-17|アメック・キャピタル・プロジェクツ・リミテッド|Apparatus and method for vitrifying contaminated soil or waste| US6485404B1|2002-04-04|2002-11-26|Radioactive Isolation Consortium, Llc|Advanced vitrification system improvements| US9764323B2|2014-09-18|2017-09-19|Waters Technologies Corporation|Device and methods using porous media in fluidic devices| US10308541B2|2014-11-13|2019-06-04|Gerresheimer Glas Gmbh|Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter| US11180236B1|2016-06-02|2021-11-23|X Development Llc|Carbon pressure vessels for gas storage|
法律状态:
2001-03-05| AS| Assignment|Owner name: KARL STORZ GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KURFESS, KARLHEINZ;SALVERMOSER, MARKUS;REEL/FRAME:011585/0270;SIGNING DATES FROM 20001208 TO 20001223 | 2006-05-31| REMI| Maintenance fee reminder mailed| 2006-11-13| LAPS| Lapse for failure to pay maintenance fees| 2006-12-13| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2007-01-09| FP| Lapsed due to failure to pay maintenance fee|Effective date: 20061112 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US9459398P| true| 1998-07-30|1998-07-30|| US09/350,194|US6211424B1|1998-07-30|1999-07-09|Advanced vitrification system| US09/733,526|US6479021B2|1998-07-30|2000-12-11|Advanced vitrification system pyrographite|US09/733,526| US6479021B2|1998-07-30|2000-12-11|Advanced vitrification system pyrographite| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|